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RF Systems Evolution 
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TEAM

3DMRFS

Compact, Intelligent RF 
Microsystems enabling 

new architectures where 
mission flexibility and 

response time are critical
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Digital Beamforming

Next Generation
Multifunction Platforms

High Payoff Military 
Capabilities

- MTO Programs -
Revolutionary Technology

EPIC

DARPA MTO Technology 
Impact

WBGS-RF

ASP
Next Generation

RF Systems

Low Cost 
Expendables
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TFAST 
Accomplishments

Phase 1
0.25µ InP HBT 

4 levels of interconnect 
for high density

150GHz Digital Circuit Demonstrated

Phase 2

8

DDS Demonstrated - 30 GHz with 40dB SFDR 

Base 
  

 Collector 
  

Emitter 
  

Phase 3
Transition
Digital E/A 

2.5mm x 4.3mm

> 50% 
Yield

> 400GHz Ft

> 330GHz Ft

> 500GHz Ft

Dr. Steve Pappert, DARPA MTO
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TEAM - SiGe Technology  for DoD 
Systems

SiGe BiCMOS Provides the Optimal Mix 
of RF and Digital Technology

Challenges to Mature this Technology:

DoD System Impact Enabled By DARPA 
Development of SiGe SoC

System-on-a-Chip (SoC) implementation permits 
installation of Digital EW receivers at the Antenna

• Dramatic reductions in size, 
weight & recurring cost

• Improved Performance

• >80 dB of broadband isolation between sensitive 
analog circuits and high speed digital switching

• Methodologies for design of ultra large-scale 
circuits operating at mm-wave frequencies

• Maintaining linear performance while using fast 
devices with low breakdown voltages

• New circuit structures that leverage the level of 
analog and digital integration   

SiGe SoCs enable Intelligent, High-Performance RF 
Low Cost Sensors

SiGe SoC is a critical enabler for Multi-Beam, Multi-
Function Element-level Digital Beamformer Arrays

Maximum Flexibility for 
Multifunction Operation

Small, Affordable Sensors 
including: Situational 
Awareness, Comms Relay & 
Electronic Attack

• HBT devices are optimal for circuits requiring precision 
threshold control, Wide Bandwidth, and high dynamic 
range (ie, ultra-wideband ADC& DAC)

• CMOS devices are best suited to high density digital 
processing (ie, Digital Control, DSP, memory)

• High-Quality on-chip passives for on-chip filters, 
oscillators, and other RF functions

• Advanced Copper Interconnects provide Low latency 
and High-Throughput

• Highly manufacturable process with open access to 
DoD customers via trusted foundry access

Dr. Michael Fritze, DARPA MTO
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TEAM Receiver-on-a-Chip 
Architecture

Architecture Features
• On Chip Clock Generation
• Automatic on chip AGC control 

extends A/D dynamic range by 18dB 
• Serial I/F for remote sensing

• Custom CMOS DSP for Receiver Applications
• Migrate to on-chip FPGA core

Dual Interface 
formats provide 
remote or local  

receiver 
processing

IFM Monitors full spectrum for 
high POI  Detection

• A/D provides 5GHz  bandwidth
• On-chip dither improves SFDR 

Phase 2 RF IC ADC ICRF IC

• Custom CMOS DSP for Receiver Applications
• Migrate to on-chip FPGA core

Dual Interface 
formats provide 
remote or local  

receiver 
processing

IFM Monitors full spectrum for 
high POI  Detection

• A/D provides 5GHz  bandwidth
• On-chip dither improves SFDR 

Phase 2 RF IC ADC ICRF IC

3” x 2”

Enables new 
“Receiver at the 

Antenna”
Architecture
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TEAM SiGe RF IC

One Component
Chip Size = 3.1 mm X 1.6mm

IBM SiGe 8HP
Transistor Count:  313 npn, 162 cmos

Power:  2.5 W

15 Discrete COTS Components
Power:  6 W

TEAM

Substrate filter 
design flaw
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Analog Spectral Processor
MEMS Based RF Filters 

25 MHz BW
RF Channelization 
from 20-6000 MHz

Preselect Filter 
Banks- Less than 4dB 
Filter Insertion Loss

Evanescent Cavity 
Preselect Filters

Fixed LC  Filters

Piezo Acoustic Filters

Tunable LC 
Filters

Si-Bar 
Acoustic IF Filters

Dr. John Evans, DARPA MTO

Low Power, High Performance
Communication and SIGINT Systems

Soldier 
Worn

Small UAVs

Expendables

Lower Cost 
Stand-Off

BiCMOS
RF Conversion Si-Bar Acoustic

Analog Sensor
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ASP Progress 
First Iteration Results (12/06)

Evanescent Cavity  Filters

Simulated Vs. Measured Results

Fixed LC Filter
3.5 mm

• BW = 300 MHz at 1.05 GHz
• Insertion loss 2 dB

-40

-30

-20

-10

0
0 1 2 3 4 5

Frequency (GHz)

In
se

rti
on

 lo
ss

 (d
B

)

Measured Results

Simulated

Piezo Acoustic Filters

(405µmx70µm)

• BW = 2.9 MHz at 730 MHz
• Insertion loss 12 dB

Si-BAR IF Filters

135MHz SiBAR resonator 

(120µmx30µm)

• Measured Q= 24700
• Insertion loss 34.5dB

• 3.75 to 5 GHz
• BW = 21MHz to 27MHz
• Insertion loss 4.2 to 3.7 dB

30 microns 50 microns
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Diameter = 12µm

Width = 450nm

Gap = 200nm

Optical Modulator Optical Filter

Optical Channellizer
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TIA

LASER

• 20 X 20 mm Chip
• 100 Photonic Devices
• 1000 Electrical Devices
• Modulator
• Multimode Interferometric Splitter
• Filter Bank
• Detector 
• TIA
• Optical Filter Elements
• Optical Bends & Transitions

AS-EPIC
Block Diagram

• Lowest power consumption reported to date.
- Less than 0.3V and µA current needed for 
complete modulation in DC.
- In AC, 3.3Vpp and 1mA  current were 
used. 

• Expected theoretical bandwidth limit >10Gb/s

300 MHz to 2.2 GHz RF IN

Dr. Jagdeep Shah 

EPIC – RF Photonics on CMOS 



11

Step 1- Metal

Step 2 - Air &
Dielectric Post 

Step 3 -
Metal

Step 4 - Air

Step 5 - Metal

Dielectric Support
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• 3D Substrate Architecture
• PWB Like Sequential Build
• Photolithography based batch process
• Monolithic Integration of passive 

RF components 

3D MERFS

Multilayer Rectacoax Structures
(Air Dielectric)

Multilayer Rectacoax Structures
(Air Dielectric)

Notion of a 
Printed Circuit 

Board

3-D MERFS

3D MicroFab Processing

Dr. John Evans, DARPA MTO
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3D MERFS Implementation

PWB like fabrication processing allows for the integration of RF distribution networks, 
waveguide manifold and embedded T/R circuits in a single monolithically integrated subsystem.

ASSEMBLY

Low loss , high isolation transmission lines, 
couplers and  resonators have been fabricated 
using 3D MERFS Technology.

1 mm1 mm

2.5 λ spacing
λ/2 NOT DOABLE

3D-MERFS Suitable For High Volume
“PCB-Type” Manufacturing > 10K Qtys.
3D-MERFS Suitable For High Volume

“PCB-Type” Manufacturing > 10K Qtys.
LITHOGRAPHY

Proliferation of systems - low cost, high 
volume manufacturing 

Close-up of 3D MERFS to RF 
Switch Interface

Eleven strata geometry provides full 
functionality for GNG & Subsystem 
Demos.

Embedded RF Devices in 
MERFS 3D Interconnect 
Substrate



13

Future Directions and 
Challenges

DARPA investments are successfully developing technologies which
can enable new wideband military system capabilities.

– Electronic Support/Attack Systems migrating from large platforms to small UAVs, 
vehicles and soldiers

– Improved “Kill Chain” response time due to higher persistence and high POI
– Improved self protection with increased sensitivity
– Concurrent Multi-functionality

….but the picture is getting more and more complex. Threats are getting 
smarter and the spectrum more cluttered

What’s needed is higher dynamic range mixed signal electronics without 
sacrificing speed or circuit density

– Can dramatically reduce the amount of hardware and number of platforms needed to 
achieve full spectrum dominance

– Can revolutionize handhelds by enabling low cost, assured communications in high 
interference environments (e.g. Communicating while IED jamming)

– Can enable ultra high capacity SATCOM 


